Otologic Emergencies

Barry E. Hirsch, M.D.
Professor, Otolaryngology
University of Pittsburgh Medical Center

Disclosures

• This speaker has no commercial relationships to disclose.

Learning Objectives

• Provide a detailed and systematic work-up for common otologic emergencies including hallmark physical examination findings and interpretation of pertinent laboratory and imaging studies.
• Review evidence-based treatment protocols and guidelines for determining when surgical intervention is warranted.
• Determine the appropriate frequency of observation and assessment of treatment response.
Medical Emergencies
- Airway
- Bleeding
- Circulation

Otologic Emergencies
- Trauma
- Infection
- Facial paralysis
- Acute vertigo
- Sudden hearing loss

Otologic Emergencies
Evaluation
- History
- Physical Exam
 - Eye movement (nystagmus)
 - Facial nerve function
 - Tympanic membrane
 - Tuning forks
- Audiometric testing
- Imaging
Otologic Emergencies

Trauma

- Auricular hematoma / seroma
- Laceration

Trauma to the Pinna

- Auricular Hematoma/Seroma
 - Blunt trauma – assault, wrestling
 - Anterior surface
 - Acute pain with tenderness
 - Swelling and fluctuance
Auricular Hematoma / Seroma

Treatment

• Drainage
 – Needle aspiration (18Ga)
 – Incision
 • Rubber band, Penrose

• Compression dressing
 – Mattress sutures with bolsters
 – Xeroform, cotton/mineral oil
 – Dental roll
 – Silastic sheeting
Auricular Laceration

• Sharp clean edges
 – Two layer closure
• Skin avulsion
 – Anterior - 2° healing
 – Posterior – local flaps
• Human bites
 – Leave open

Temporal Bone Trauma

Pinto A. Management of Temporal Bone Trauma. Craniomaxillofac Trauma Reconstr. Jun 2010

INCIDENCE

• 75% of MVA result in head trauma
• 14-22% of skull fractures involve TB
• 31% TB fractures result from MVA
 – Assaults, falls, motorcycle, pedestrian, GSW

March A. Temporal Bone Fracture Management
MECHANISM OF INJURY

- 90% blunt trauma
- Significant force of 1875 lbs
- Associated intracranial injuries - 90%

CLASSIFICATION

- Relation of fracture to long axis of petrous pyramid:
 - Longitudinal
 - Transverse
 - Mixed
 - Oblique
- Otic capsule sparing / disrupting

LONGITUDINAL FRACTURES

- 80% of TB FXs
- Lateral blow
- 8-29% bilateral
 - TM disruption
 - Bloody otorrhea
 - CHL
 - 10-25% VII injury
LONGITUDINAL FRACTURES

TRANSVERSE FRACTURES

- 20% of TB FXs
- Occipitofrontal blow
 - Profound SNHL
 - Vertigo
 - 30-50% VII injury
 - CSF fistula

TRANSVERSE FRACTURES
MIXED FRACTURES

- Mixed anatomical & clinical findings

PENETRATING TRAUMA

- Gunshot wounds
- More destructive
 - 36% CNS injury
 - 32% vascular injury
 - 50% VII injury
 - 86% IE/ME injury

CLINICAL EVALUATION

PRIORITIES

- Airway
- Hemodynamics
- Central neurological deficits
- Cervical spine stability
CLINICAL EVALUATION

• Eyes: spontaneous nystagmus, racoon eyes
• Ears: Battle’s sign, EAC bleed/otorrhea, TM integrity, hemotympanum
• Nose: rhinorrhea (halo sign)
• Neuro: CN VII & VIII (tuning forks/audio)

RADIOLOGIC EVALUATION

• CT scan: -1.0-1.5mm axial/coronal planes, bone window algorithm - 100% sensitive
• MRI scan: - Diagnosis of concomitant CNS injury
COMPLICATIONS

- Facial nerve injury
- CSF leakage & meningitis
- Hearing loss
- Vertigo
- Cholesteatoma

FACIAL NERVE INJURY

- Majority resolve spontaneously
- Determinants for surgical intervention:
 - Time of onset of paralysis - immediate/delayed
 - Severity of paresis
 - Mechanism of injury
FACIAL NERVE INJURY

- **Incidence:**
 - 10-18% OC sparing fx
 - 38-50% OC disrupting fx
 - 45-50% GSW
- **Site:** 80-93% perigeniculate

Immediate vs Delayed Paralysis

- Immediate paralysis = severe nerve trauma/transection = worse prognosis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>N</th>
<th>"Good" recovery</th>
<th>Partial recovery with synkinesis</th>
<th>No recovery in 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>19</td>
<td>10 (53%)</td>
<td>6 (32%)</td>
<td>3 (16%)</td>
</tr>
<tr>
<td>Delayed</td>
<td>11</td>
<td>9 (82%)</td>
<td>1 (9%)</td>
<td>1 (9%)</td>
</tr>
</tbody>
</table>

Severity of Paresis

- Incomplete paresis usually resolves spontaneously
- Intervene surgically if:
 - 90% or more degeneration by ENoG
 - No EMG response
FACIAL NERVE INJURY

Facial Nerve Pathology Discovered During Exploration of Longitudinal Fractures (Fisch/Coller/Lambert & Brackmann)

<table>
<thead>
<tr>
<th>Facial Nerve Pathology</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraneural edema and/or hematoma</td>
<td>45-93</td>
</tr>
<tr>
<td>Impingement by bony spicule</td>
<td>17-45</td>
</tr>
<tr>
<td>Total nerve transection</td>
<td>0-26</td>
</tr>
<tr>
<td>No pathology found</td>
<td>0-7</td>
</tr>
</tbody>
</table>

Surgical Management

- **Approach:**
 - No hearing: translabyrinthine
 - Hearing: transmastoid & MCF transmastoid & supralabyrinthine
- **Timing:** early repair / grafting
- **Bony vs epineural decompression**
 - Bony decompression for neural edema
 - Epineural decompression for large intraneural hematoma
 - Remove bony spicules
 - Primary anastomosis preferred to cable grafting
 - Epineural neurorrhaphy
FACIAL NERVE INJURY

Does Sx Intervention Alter Outcome?

Results from Facial Nerve Exploration Following Temporal Bone Trauma

<table>
<thead>
<tr>
<th>Study</th>
<th>"Good" results</th>
<th>N</th>
<th>HB I-II</th>
<th>N</th>
<th>HB I-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambert/Brackmann</td>
<td></td>
<td>15</td>
<td>10 (66.6%)</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Coker et al.</td>
<td></td>
<td>9</td>
<td>5 (55.5%)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>"Good" results</td>
<td>64</td>
<td>33 (50.0%)</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>

In Summary

1. Goal of surgical intervention is to provide most favorable environment for axonal regeneration
2. Explore OC disrupting fractures/GSW when electrical tests indicate poor prognosis
3. Explore OC sparing fractures when CT demonstrates anatomical barrier to nerve regeneration
4. Delayed onset facial paresis usually has good recovery

CSF LEAKAGE & MENINGITIS

- Incidence of CSF leak 11-27%
 - acute
 - delayed
- Risk of meningitis 12%
- Increased risk if:
 - leak > 7 dys (23% vs 3%)
CSF LEAKAGE & MENINGITIS

Acute CSF Fistula
- Pneumococcus, Staph, Strep, H. influenza
- Otorrhea – longitudinal fractures
- Rhinorrhea – transverse fractures
- Role of prophylactic antibiotics controversial
 - ? Decreased incidence of meningitis
 - Masking of early infection & antibiotic resistance

Acute CSF Fistula
- Majority resolve spontaneously in 3-5 days
 - Bed rest, head elevation x 5 days
 - Lumbar drainage if leakage persists after 5 days
- Surgical closure of fistulas persisting after 7-10 days of conservative management
CSF LEAKAGE & MENINGITIS

Surgical Closure

- Approach influenced by:
 - site of leak
 - hearing status
- OC sparing fractures: MCF, extradural repair
 OC disrupting fractures: Labyrinthectomy & mastoid obliteration

Late Meningitis

- May occur years after trauma
- Incidence unknown
- Incomplete healing of labyrinthine fracture
- Labyrinthectomy & obliteration of pneumatized spaces & ET

HEARING LOSS

- Audiogram as soon as patient is stable
 - Pure tone thresholds
 - Tympanogram
 - Stapedial reflex
- Types of hearing loss:
 - Sensorineural
 - Conductive
 - Mixed
HEARING LOSS
Sensorineural Hearing Loss

• Mechanisms:
 – Labyrinthine fracture
 – Labyrinthine concussion or bleed
 – Noise-induced HL
 – PLF
 – Auditory CNS injury
• Majority will not improve significantly with time

HEARING LOSS
Conductive Hearing Loss

80% resolve with no intervention (6 Weeks)

• Hemotympanum: 30-45 dB CHL
• TM perforation: 20 dB CHL
• Ossicular dislocation > fracture
 – Incudostapedial separation most common
• (max CHL of 60 dB if ossicular discontinuity)

HEARING LOSS
Conductive Hearing Loss

Middle Ear Surgical Pathology found in 31 Patients Following Temporal Bone Trauma (Hough & Stuart)

<table>
<thead>
<tr>
<th>Injury</th>
<th>Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incudostapedial joint separation</td>
<td>82.3</td>
</tr>
<tr>
<td>Massive dislocation of incus</td>
<td>57.1</td>
</tr>
<tr>
<td>Fracture of stapedial arch</td>
<td>10.0</td>
</tr>
<tr>
<td>Epitympanic fixation of ossicles</td>
<td>25.0</td>
</tr>
<tr>
<td>Fracture of malleus</td>
<td>11.0</td>
</tr>
</tbody>
</table>
HEARING LOSS

Conductive HL Management

- IS Separation:
 - Anatomic realignment
 - Prosthetic reconstruction
- Incus Dislocation:
 - Repositioned autograft
 - Incus replacement prosthesis

HEARING LOSS

Conductive HL Management

- Stapes Fracture (superstructure):
 - Footplate fixed: stapedectomy
 - Footplate mobile: TORP
- Malleus Fracture:
 - Ossicular reconstruction
- Epitympanic Fixation
 - Bony / fibrous: removal
 - IRP

VERTIGO

- Postconcussion syndrome
- Labyrinthine concussion
- Cupulolithiasis
- Labyrinthine fracture
- PLF
- Delayed endolymphatic hydrops
VERTIGO

Labyrinthine Concussion
- Most common cause of posttraumatic vertigo
- Vertigo with rapid head movement
- Normal ENG
- Intact labyrinthine capsule on CT
- Self-limited, no treatment

Cupulolithiasis
- Utricular degeneration releases otoconia into PSC ampulla
- Symptoms of BPPV mos / yrs after trauma
- Positive Dix-Hallpike test
- Particle repositioning maneuver

Labyrinthine Fx
- Sudden complete vestibular deficit
- Debilitating vertigo, nausea & emesis
- Horizontal nystagmus away from affected ear
- Absent caloric in affected ear
- CT positive
- Vestibular suppressants & physical therapy
VERTIGO

Perilymphatic Fistula

- Explosive / implosive
- Fluctuating / progressive SNHL & vertigo, worsened with straining
- 58% positive fistula test
- Bedrest; exploratory tympanotomy if symptoms persist

DELAYED ENDOLYMPHATIC HYDROPS

- Symptoms mos / yrs after trauma
- Vertigo, fluctuating HL, tinnitus & aural fullness
- Salt restriction, diuretics & vestibular suppressants

• Most posttraumatic vertigo is self-limited in nature
• Litigation may prolong recovery
• Surgical intervention for persistent disabling vertigo:
 - No hearing: labyrinthectomy
 - Hearing: vestibular nerve section
Otologic Emergencies

Infection

- Perichondritis
- Otitis externa
- Otitis media

Perichondritis

- Trauma (piercing) often involved
- Involvement over the cartilaginous pinna
- Ear lobe often spared
- Pseudomonas most common > Staph
- Systemic quinolones
- Culture specific
- Drainage for abscess formation
Otitis Media

- Bullous myringitis
- Acute suppurative O.M.

Bullous Myringitis

- Acute severe otalgia
- Single or multiple fluid filled blisters on the T.M.
- Aspirate with 3 or 5 Fr suction
- Mycoplasma pneumoniae etiology?
 - Bacteriology is similar to AOM
- If residual inflammation - topical ofloxacin

Sudden Hearing Loss

Otitis Media

- Pain
- Erythematous T.M.
- Conductive hearing loss by tuning forks
- Antibiotic treatment
- Myringotomy
Acute Otitis Media

<table>
<thead>
<tr>
<th>Microbiology</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus pneumonia</td>
<td>(3x)</td>
</tr>
<tr>
<td>Hemophilus influenza</td>
<td>(2x)</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>(x)</td>
</tr>
<tr>
<td>Streptococcus Group A</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
</tbody>
</table>

Otologic Emergencies

- Facial Paralysis
Otologic Emergencies

Facial Paralysis

- Otitis media
- Bell's palsy
- Herpes Zoster oticus - Ramsey Hunt syndrome
- Temporal bone trauma

Facial Paralysis

Acute Otitis Media

- More frequent in children
- More likely in adults with AOM
- Wide myringotomy is needed
- Antibiotics and steroids
- Mastoidectomy not necessary unless coalescence
- Surgical decompression not indicated

Facial Paralysis

Bell's Palsy

- Prodrome of post-auricular pain
- Rapid onset of paresis/paralysis
- May see small vesicles palate/mouth
- Presumed of viral origin (Herpes simplex)
- No associated hearing loss or dizziness
- Auricular vesicles are absent
Bell’s Palsy

Treatment

• Eye Care
 – Tear replacement, ointment at night
 – Moisture chamber or patch
• Prednisone
 – 60 mg tapered
• Electrical testing ENoG
• Close follow-up

Debra Munsell, PA-C

Bell’s Palsy Clinical Guidelines
Today
5-6 pm

Facial Paralysis

Herpes Zoster Oticus

• Prodrome of pain
• Auricular vesicles
• Rapid onset facial paralysis
• Hearing loss and/or vertigo often
Herpes Zoster Oticus

Treatment

- Eye Care
 - Tear replacement, ointment at night
 - Moisture chamber or patch
- Prednisone
 - 60 mg tapered
- Anti-virals
 - Acyclovir, famciclovir, valacyclovir
- Electrical testing ENoG
- Poor prognosis compare to Bell’s

Facial Paralysis

Temporal Bone Trauma

- More common in transverse fractures
- Often there is associated hearing loss
- Document onset (immediate/delayed) and degree of paresis/paralysis
- CT scan, temporal bone; bone window

Otologic Emergencies

Acute Vertigo
Vestibular Disorders
Anatomic Locations

• Labyrinth
• Vestibular nerve
• Central nervous system

Acute Vertigo
Temporal Bone Trauma

• Nystagmus, nausea, vomiting
• Sudden hearing loss
• Facial paralysis often present
• CT head, temporal bone, bone window
• Supportive care

Acute Vertigo
Meniere’s Disease

• Sudden onset of vertigo
 – Lasts 15 minutes to 24 hours
• Unilateral hearing loss
 – Sound distortion/sensitivity
• Unilateral tinnitus
• Aural fullness or pressure
Meniere’s Disease

Treatment

- Stabilize nausea and vertigo
 - Droperidol, compazine, diazepam
- Hydration if needed
- Follow-up for long term treatment

Acute Vertigo

Vestibular Neuronitis

- Occasionally following URI
- No hearing loss
- Nystagmus often present
- Vertigo lasts days to weeks
- Can be recurrent history

Acute Vertigo

Treatment

- Quick acting
- droperidol – Inapsine
- diazepam – Valium
- odansetron – Zofran
- promethazine – Phenergan
- prochlorperazine – Compazine
- meclizine – Antivert
Acute Vertigo
Wallenberg (lateral medullary) Syndrome

- Vertigo, nausea, vomiting, nystagmus
- Ataxia, falling to side of lesion, unable to stand
- Ipsilateral Horner’s syndrome
- Dysphagia – ipsilateral palate, vocal cord paralysis
- Loss of pain and temperature sensation ipsilateral face, contralateral body

Otologic Emergencies
Sudden Hearing Loss

- Cerumen impaction
- Otitis media
- Trauma
- Meniere’s
- Idiopathic
Sudden Hearing Loss

Cerumen Impaction
- T.M. is not visible
- Tuning forks
 - Weber – lateralizes
 - Rinne – B > A
- Dry removal - curette, hooks, suction
- Wet removal – irrigation rarely

Trauma
- Unilateral or bilateral
- Vertigo with otic capsule involvement
- Bloody otorrhea, canal lacerations
- Hemotympanum
- Tuning forks – conductive/sensorineural
- Facial paralysis occasionally

Meniere’s Disease
- Sensorineural hearing loss
 - Low frequency upsloping curve
- Aural fullness
- Tinnitus
- Vertigo – 15 minutes to 24 hours
Sudden Sensorineural Hearing Loss

Idiopathic

- Viral infection
- Vascular occlusion
- Inner ear membrane rupture
- Autoimmune

Idiopathic

- Incidence 5–20 per 100,000
- Loss of at least 30 dB in 3 contiguous frequencies < 3 days
- Diagnosis of exclusion

Idiopathic Sensorineural Hearing Loss

Evaluation

- Ear exam is normal
- Audiogram
- Metabolic blood tests – rarely obtained unless bilateral
- Imaging – MRI (CT if contraindicated)
Clinical Course of ISSNHL

- Spontaneous recovery 32% - 65%
- Prognostic variables:
 - Severity of loss
 - Audiometric configuration of loss
 - Vertigo
 - Age
 - Time from onset to diagnosis and treatment

Idiopathic Sensorineural Hearing Loss

Treatment

- Corticosteroids
- Antivirals
- Vasodilators
- Diuretics
- Histamine
- Plasma expanders
- Hyperbaric oxygen

Antiviral Therapy

Generally no additional benefit compared to steroid alone treatment
Corticosteroid Therapy

- Beneficial effect on hearing recovery compared to placebo
 - Administered within 10 days of onset
 - Moderate hearing losses

Mechanism of Action

- Increased cochlear blood flow
- Anti-inflammatory effect
- Regulation of cochlear fluid and electrolyte balance

Protocol for Oral Steroids

- Prednisone:
 - 1mg/kg body weight/day x 10-14 days
 - 60-80mg daily x 5-10 days
 - 10mg/day taper

- Medrol Dosepak
Intratympanic Steroid Therapy (ITS)

• Higher inner ear drug level more efficacious
• Avoid systemic side effects
• Useful when systemic steroids contraindicated

ITS Therapy

• Dexamethasone (4, 10, 16, 24mg/mL)
• Methylprednisolone (32-62.5mg/mL)
 • 0.3-0.5 mL injected
 • Addition of 0.1cc 1-2% lidocaine

ITS Delivery Techniques

• Intratympanic injection(s)
• Myringotomy +/- ventilation tube
• Round window application
• Silverstein MicroWick
Protocols for ITS in ISSNHL

- Initial or primary treatment
- Adjunctive treatment administered concomitantly with systemic steroids
- Salvage therapy after failure of systemic steroids

ITS Salvage Therapy for ISSNHL

- Some measurable benefit in hearing recovery
 - Gianoli GJ, Li JC. 2001
 - Lefebvre PP, Staecker H. 2002
 - Ho GM, Lin HC, Shu MT, et al. 2004
 - Herr BD, Marzo SJ. 2005
 - Roebuck J, Chang JC. 2006
ITS Salvage Therapy for ISSNHL

- Hearing improvement 30-50%
- No benefit after 36 days
- Poorer recovery with severe to profound losses

Concommitant ITS Therapy

- Lauterman J, Sudhoff H, Junker R. 2005
- Battista RA. 2005

ITS administered as primary therapy adjunctively with systemic steroids showed no benefit in recovery of profound SSNHL

Risks of ITS Therapy

- TM perforation
- Acute otitis media
- Transient vertigo (15-20 seconds)
- Worsening hearing
Management of Sudden SNHL

• Document hearing with audiogram
• Systemic steroids +/- intratympanic steroids
• Follow-up audiogram in 1 week
• Elective MRI with gadolinium

Clinical Practice Guideline:
Sudden Hearing Loss

Otolaryngology-Head and Neck Surgery
March 1, 2012