	_
Chronic Rhinosinusitis in Children	
Chronic Kinnosinusitis in Children	
Hassan H. Ramadan, M.D., MSc., FACS	
West Virginia University, Morgantown, WV	
Fourth Annual ENT for the PA-C April 24-27, 2014 Pittsburgh, PA	
	1
Disclosures	
• None	
ENT	
Fourth Annual ENT for the PA-C April 24-27, 2014 Pittsburgh, PA	
Learning Objectives	
Differentiate between sinusitis in children and common cold or allergy	
Develop an appropriate plan of medical	
management of a child with sinusitis. • Recognize when referral for surgery may be	
necessary and what the surgical options are for children.	
ENT (E)	
Fourth Annual ENT for the PA-C April 24-27, 2014 Pittsburgh, PA	

Chronic Rhinosinusitis: Clinical Definition

- Inflammation of the nose and paranasal sinuses characterized by 2 or more symptoms one of which should be either nasal blockage/ obstruction/congestion or nasal discharge (anterior/posterior nasal drip):
 - <u>+</u> cough
 - + facial pain/pressure
- and either:
 - Endoscopic signs of disease and/or relevant CT changes
- Duration: > 12 weeks without resolution

Health Impact of Chronic Recurrent Rhinosinusitis in Children CHQ-PF50 results for Role/ Social-Physical Rhinosinusitis group had lower scores than all other diseases (p<0.05) Cunningham MJ, AOHNS 2000

Rhinosinusitis and the Common Cold MRI Study

- Sixty (60) children recruited within 96 hrs of onset of URI sxs between Sept-Dec 1999 in Finland.
- Average age= 5.7 yrs (range= 4-7 yrs).
- Underwent an MRI and symptoms were recorded.

Kristo A et al. Pediatrics 2003;111:e586-e589.

Rhinosinusitis and the Common Cold MRI Study

		MRI	rindings*
N=60	Normal	Minor Abnormality	Major Abnormality
	n (%)	n (%)	n (%)
Maxillary sinuses	15 (25)	9 (15)	36 (60)
Ethmoidal sinuses	10 (17)	13 (22)	37 (62)
Frontal sinuses†	16 (27)	6 (10)	11 (18)
Sphenoidal sinusest	31 (55)	6 (10)	20 (35)
All sinuses	7 (12)	12 (20)	41 (68)

26 of the children with major abnormalities had a repeat MRI after 2 weeks with a significant improvement in MRI findings although 2/3rds still had abnormalities.

Anatomical Factors

- No good studies in pediatrics
- No studies comparing anatomic abnormalities in children with CRS to control children
- One study showed no correlation between anatomic abnormalities and extent of sinus disease in CT scans of 65 children with CRS (Al Qudah 2008).

Bacteriologic Findings of Pediatric CRS (maxillary sinus punctures)

Species	No. cultured
α-Hemolytic Streptococcus	83 (20.8%)
H influenzae	78 (19.5%)
S pneumoniae	56 (14.0%)
Coagulase-negative Staph	52 (13.0%)
S aureus	37 (9.3%)
Anaerobes	32 (8.0%)
M catarrhalis	21 (5.3%)
Corynebacterium species	16 (4.0%)
Neisseria species	6 (1.5%)
Miscellaneous	18 (4.5%)
Total	399
Hsin CH, et al. Am J Otolaryngo	Head Neck Med Surg 2010;31:145-9.

Role of Adenoids

Adenoiditis vs CRS

- Difficult to distinguish between chronic adenoiditis and CRS.
- Clinical symptoms and exam findings are identical.
- CT scan will allow us to differentiate between the 2 entities.
- ●Bhattacharyya 2004:
 - CT score >5 suggestive of CRS
 - Score <5 adenoiditis</p>

Adenoid Biofilm in Pediatric CRS

- 16 adenoid samples collected from 4 girls and 12 boys:
 - Age 3 mos to 10 yrs.
 - 7 with CRS failed maximal Rx
 - 9 with OSA
- SEM imaging of the adenoid surface to determine percent surface area covered by biofilm.

Coticchia J et al. Arch Otolaryngol Head Neck Surg 2007;133:110-14.

Adenoid Biofilm in Pediatric CRS Mag x500 Mag x2000 Biofilm No Biofilm

Adenoid Biofilm in Pediatric CRS

Patient No./Sex/Age	Dingnesis	Biofilm Surface Area. %
1/M/2 v	CRS	96.5
2/M/2 y	CRS	98.2
3M/2y	CRS	99.2
4/M/5 V	CRS	95.1
5/F/3 V	CRS	97.6
EF/2 y	DRS	88.0
7/M/10.9	CRS	88.5
9/M/0 ma	0SA	0.0
9/M/12 mo.	OSA	0.0
10/M/16 mo.	OSA	8.5
11/M/5 y	USA	23
12/F/3.V	DSA	0.0
13M4 y	USA	0.0
14/F/3 y	DSA	3.8
15/M/h y	DSA	43
16/M/3 ma	DSA	0.0

Coticchia J et al. Arch Otolaryngol Head Neck Surg 2007;133:110-14.

Chronic Inflammation

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

CRS in Young Children

- Maxillary sinus biopsies from children with CRS.
- Median age: 3.9 yrs, Range: 1.4-8.2 yrs
- Compared to archival tissue from maxillary sinuses of adults with CRSsNP.

Chan KH, et al. J Pediatr 2004;144:206-12.

CRS in Young Children

Table I. Inflammatory cell profiles in the sinus submucosa of children with CRS and adult CRS controls

Inflammatory cells	Pediatric CRS (N = 19)	Adult CRS (N = 5)	P value
Neutrophils	37 (2-128) [†]	12 (3-46)	.14
Lymphocytes	469 (181-1880)	294 (228-328)	.02
Eosinophils	13 (0-56)	82 (29-256)	.01
Plasma cells	88 (8-366)	58 (25-121)	.52
TOTAL	678 (206-2280)	510 (295-677)	.14
MBP+ cells	15 (0-51)	47 (33-212)	.01

Chan KH, et al. J Pediatr 2004;144:206-12.

CRS in Young Children

Less eosinophilic, more lymphocytic inflammation in children

Chan KH, et al. *J Pediatr* 2004;144:206-12.

Workup

Fourth Applied ENT for the DA-C | April 24-27, 2014 | Dittsburgh DA

Diagnostic tests

- Appropriate History
- Nasal endoscopy
- Middle meatal cultures
- CT scans
- Miscellaneous testing:
 - Allergy testing (RAST, skin test)
 - Immunoglobulin quantitation
 - Sweat chloride
 - Biopsy for evaluation of cilia

Rhinosinusitis-Associated Conditions

- Allergic rhinitis
- Asthma
- Nasal polyps
- Aspirin hypersensitivity
- Cystic fibrosis
- Immune deficiencies
- Gastroesophageal reflux disease
- Primary Ciliary Dysmotility

CRS and Allergy in Children

- 2200 children referred for chronic respiratory symptoms
- 351 fulfilled criteria for CRS (sxs >12 weeks)
- Underwent SPT and serum IgE
- Positive SPT to at least 1 allergen/hi IgE: 29.9%
- Most frequent pos ags: pollens, dustmites, molds and animal dander.
- General prevalence of allergy in children in Italy= 31.8%

Leo G et al. Ped Allergy Immunol 2007;18:19-21.

١		!

Sinusitis and Asthma

- 48, nonrandomized children (mean age= 8.2 yrs)
 - moderate to severe asthma
 - Almost daily wheezing for 7 months
- Pharmacologic or surgical intervention for associated sinusitis:
 - 80% able to discontinue asthma medications
 - 80% had normal findings on x-ray films
- Asthma recurred when sinusitis subsequently developed

Rachelefsky et al. Pediatrics 1984;73:526-9.

Sinusitis and Asthma

- 18 children (5- 12 yrs) with moderate asthma (poorly controlled by ICS) and CRS.
- Treated with Amox/Clav, systemic steroids and INS x 2 weeks
- All improved their asthma control
 - 8/18 becoming intermittent asthma
 - 10/18 becoming mild asthma
- Nasal inflammatory markers:
 - Inflammatory cells decreased
 - IL-4 (TH2) decreased
 - IFN- γ (TH1) increased

Tosca MA et al. Ann Allergy Asthma Immunol 2003;91(1):71-8.

Specific Antibody Deficiency (SAD)

- Impaired response to immunization with polysaccharide antigens in the presence of normal quantitative immunoglobulin levels.
- Sinopulmonary infections with *S. pneumo, M. cat, H. influenzae,* and *S. aureus* most common manifestations.
- SAD recognized in 5-20% of children >2yrs old who suffer from recurrent or severe infections.

Patient diagnosed with CRS Patient diagnosed with CRS Falled medical therapy underwest surgery Anti-pneumococcal antibody iters tested n=129 Low baseline anti-pneumococcal antibody iters tested n=129 Normal baseline unti-pneumococcal nnitbody levels n=36 (23%) Lost to follow up Prozumovas administered, anti-pneumococcal nnitbody levels rednaw n after fi weeks n=36 (23%) Responders n=34 (78%) Non-responders (SAD) n=13 (22%) Carr TF, et al. Am J Rhinol Allergy 2011;25:241-44.

Immunodeficiency and CRS

- Evaluate the following:
 - IgE, G, M, A, and IgG subclasses
 - Antibody levels before and after vaccination with H flue and Strep pneumo
- If abnormalities detected, immunize and repeat titers, refer to allergist/immunologist
- Consider IVIG or SCIG

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Sinusitis: GERD

- Children aged 2-18 yrs referred for evaluation of chronic sinus disease from Dec 1996 through April 1998.
- Criteria for participation in the study:
 - − ≥3 months of multiple clinical sinus sxs
 - Failure of maximal medical management
 - Evidence of disease on CT scan after Rx
- Underwent evaluation by dual pH probes: esophageal and nasopharyngeal
- Symptom questionnaires were also obtained

Phipps CD et al. AOHNS 2000;126:831-36.

Sinusitis: GERD *30 children, Av age=7.7 yrs *19/30 (63%) had GERD *6/19 (32%) NP *15/19 (79%) improved after Rx ***Transport of the control of the contro

Primary Ciliary Dysmotility

- Primary or with Situs Inversus (Kartagener's syndrome).
- Suspected if child has recurrent infections at multiple sites: otitis, sinusitis, pneumonias.
- Ciliary biopsy is best diagnostic test.
- Site of biopsy best from non infected location (carina)
- Test directly by light microscopy or later by electron microscopy.
- Reliability of test variable at different centers.

Radiologic Testing

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Computed Tomography

5 y.o with chronic cough and nasal drainage

Treatment

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Treatment of Chronic Rhinosinusitis

- Chronic inflammatory disease
- Doubtful contribution of bacteria
- Shift in strategy to favor antiinflammatory Rx vs anti-bacterial
- Reduce usage of antibiotics

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Antibiotics

Available data does not justify the use of short-term oral antibiotics for the treatment of CRS in children (Strength of recommendation: B). Available data does not justify the use of intravenous antibiotics alone for the treatment of CRS in children (Strength of recommendation: C).

Antibiotic Choices for Children

- Initial choices:
 - Amoxicillin/clavulanate (Augmentin®)
 - Cefdinir (Omnicef®)
 - Cefpodoxime proxetil (Vantin[®])
 - Cefuroxime axetil (Ceftin®)
 - Amox/clav (Augmentin ES 600°)
- For patients with β-lactam allergies:
 - TMP/SMX, azithromycin, clarithromycin or erythromycin
 - Limited effectiveness with bacteriologic failure rates of 20-25%
 - Clindamycin
 - Consider quinolones
- Switch therapy includes interchanging the above, re-evaluating the pt and combination Rx

Adjunctive Therapy

- Saline irrigation
- Intranasal steroids
- Systemic steroids
- Systemic decongestants
- Topical decongestants
- Antihistamines
- Mucus thinners

Nasal Saline Irrigation

- Increasing perception that nasal saline contributes to resolution of sxs & inflammation:
 - -Improved mucus clearance
 - Enhanced ciliary beat activity
 - Clearance of allergen/biofilm/mediators

Harvey R, et al. Cochrane Database 2009

Nasal Saline Irrigation

- Adults and children with sxs of CRS (sxs of persistent sino-nasal disease).
 - Rhinitis with seasonal exacerbations
 - Perennial rhinitis
 - Recurrent acute sinusitis with ongoing sxs
 - Chronic rhinosinusitis
- CT documentation not required
- Saline administered as douche, irrigation, pulsed, spray, or nebulizer
- Outcome measures: QOL and sxs

Harvey R, et al. Cochrane Database 2009

Pagent refrieved fitters electronic search n° 2162. | National Scaline Irrigation | National Scaline Irrigation | National Scaline | 158, Endage = 760, Other = 244) | Note there = 1158, Endage = 760, Other = 244 | Note there = 1158, Endage = 760, Other = 244 | Note the end short service in a = 2009 | Article referent to scope of project | 100

Nasal Saline Irrigation Conclusions

- Beneficial effects of saline appear to outweigh the drawbacks for the majority of patients with chronic sinonasal symptoms.
- No evidence that saline is more effective than active agents.

Harvey R, et al. Cochrane Database 2009

Compliance with Saline Irrigation

- Retrospective study.
- Children with nasal congestion and rhinorrhea (sinusitis, allergic rhinitis, chronic rhinitis).
- Therapeutic course of isotonic nasal saline (100 ml/nostril) recommended and questionnaire administered 2-4 months later.

Parameter	Value	
n	61	Jeffe JS, et al. IJPO
Median age, years (range)	8 (2-16)	
Age, n (%)		2012; 76:409-13.
≤5 years	14 (23)	
6-12 years	38 (62)	
≥13 years	9 (15)	
Male, n (%)	41 (67)	

Intranasal Steroids

Fluticasone Propionate as Adjunctive Therapy in Acute Rhinosinusitis

- Double-blind, randomized, parallel-group, multicentered, placebo-controlled.
- Allergic or nonallergic, age: >12 years.
- Received either FP200 mcg QD or placebo for 49 ds. All patients received cefuroxime axetil 250 mg BID for the first 21 ds of the treatment period
- Patients were required to have from 7 through 28 days of symptoms prior to Visit 1

Meltzer et al J. Allergy Clin Immunol 2000;105:S208.

Effect of Intranasal Steroids on CRSsNP in Adults A Symptom scores A Symptom scores Study or Subgroup placebo topical steroids Study or Subgroup Mean 80 Total Mean 80 Total Weight N, Fixed, 99% CI N, Fixed,

Intranasal Steroids

Nasal corticosteroid treatment is a first line treatment in CRS with and without nasal polyps in children (Strength of recommendation: D).

EPOS2012

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Systemic Steroids

- Commonly used to treat inflammatory disorders of the sinuses unresponsive to intranasal steroids (polyps, severe congestion)
- Evidence suggests efficacy in improving the sense of smell and nasal airway resistance in patients with nasal polyposis
- Recent trial in the pediatric age group

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Steroids and Antibiotics in Pediatric CRS

- Randomized, placebo-controlled, double blind trial
- Children with CRS with S/S>3mos with CT abnormalities
- All received PO Amox/Clav (45/6.4 mg/kg/d) for 30 ds
- Randomized to receive methylprednisolone or placebo PO for first 15 days:
 - 1mg/kg/d (max 40 mg) for 10 ds
 - 0.75 mg/kg/d for 2 ds
 - 0.5 mg/kg/d for 2 days
 - 0.25 mg/kg/d for 1 day

Ozturk F, et al. J Allergy Clin Immunol 2011;128:348-52.

Steroids and Antibiotics in Pediatric CRS TABLE I. Baseline characteristics of patients MP group (n = 22) Placebo group (n = 23) value Age (y [SD]) 8.5 (2.9) 8.0 (2.3) NS Male/female ratio Weight (kg [SD]) 28.4 (11.7) 26.3 (7.7) NS Duration of symptoms (mo [SD]) 16.8 (17.1) 20.5 (13.5) Smoking in household, no. (%) 6 (27) 7 (30) Atopy, no. (%) Blood eosinophil count (SD) 8 (36) 10 (43) NS 322 (247) 274 (183) NS Total symptom score (SD) (Max=60) 35.1 (8.2) Total CT scan score (SD) (Max=24) 12.8 (5.3) 11.2 (4.5) NS. All parameters were insignificant between the groups, MP, Methylprednisolone; NS, not significant.

Ozturk F, et al. J Allergy Clin Immunol 2011;128:348-52.

Surgical Treatment

- · Significant differences of opinion
- No uniformity in the studies available
- Diagnosis: some based on CT scan, some based on clinical impression
- · No validated instruments were used to measure outcome: phone interviews, medical record reviews etc...
- Duration of follow up: 6 months -24 months

Surgical Treatment

- · Surgery for chronic rhinosinusitis should only be considered after medical treatment failure
- · Which surgical procedure to perform

Surgical treatment:

Indications

- · Orbital complications
- CNS complications
- Severe polyposis (CF)Immune-deficiency disorders
- Fungal rhinosinusitis

Adenoiditis and Rhinosinusitis

- 2000 Bernstein found that bacteria from adenoids correlated with lateral wall cultures in 89% of the cases
- 2007- Coticchia et al 95% of adenoids in CRS had biofilm compared to 2% in controls
- 2008 Shin et al 79% correlation between bacteriology of adenoids and stage of CRS in children

Surgical Treatment

- Adenoidectomy
- · Balloon dilation with a wash
- ESS

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

	,	

Adenoidectomy

- Takahashi 1989; 25/45 (56%) success with adenoidectomy
- Vandenberg 1997; 25/43 (58%) success with adenoidectomy for symptoms of CRS in 43 children
- Ramadan 2004; 33/64 (52%) success in 30 children with documented CRS

Adenoidectomy

- Which children were the failures of adenoidectomy for CRS
- Ramadan, Tiu 2007; 55 patients who failed adenoidectomy and required ESS
- Variables evaluated included age, gender, CT score, asthma and allergy

Asthma & Rhinosinusitis

- Marseglia et al 2010; Int J Immunopathol
- CRS & Asthma are not simply localized disease processes
- Systemic inflammatory disease
- There is strong correlation between severity of asthma and imaging features of CRS
- In moderate to severe asthmatics, the sinuses should always be investigated regardless of presence or absence of nasal symptoms

Surgical Treatment

- Adenoidectomy
- · Balloon dilation with a wash
- ESS

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Adenoidectomy with wash + IV A/biotics

- Buchman et al 1999; 27 patients had sinus wash and culture via the inferior meatus
- 89% had resolution of sxs on IV antibiotics
- · ? Adenoidectomy , wash or IV a/biotics

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Adenoidectomy + Wash & Rhinosinusitis

- 2006 Adappa & Coticchia 22 children with CRS had sinus wash with adenoidectomy and IV antibiotics
- 89% were doing well after long-term follow-up

Adenoidectomy with Wash

- Ramadan 2007; 60 children had adenoidectomy for CRS
- 32 had also sinus wash and culture via the middle meatus
- All had post-op oral a/biotics for 2 weeks

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Adenoidectomy with Wash

- Adenoidectomy group had 60% success at 12 months follow up
- Adenoidectomy-sinus wash group had 88% success rate at 12 months follow up
- Those with a high (>6) CT score & Asthmatics had better success than adenoidectomy alone

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Adenoidectomy with Wash

- Criddle 2008; 23 children had adenoidectomy with a sinus wash for CRS
 Only 7 had CT scan
- All had 2 post-op oral a/biotics for 2 weeks
- 86% had long term resolution rate

1	Inta	ct	Sti	idv
1	пца	GL	Oιι	иv

Ramadan HH et al. American J of Rhinology & Allergy; 24(1):54-56

 Establish safety & outcome of balloon sinus dilation for children with CRS refractory to medical treatment

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Materials & Methods

- Multicenter, 6 investigators prospective evaluation of children who had balloon sinuplasty over 14 months period
- All children age 2-11 years included in the study failed medical treatment with oral and/or IV antibiotics and had a positive CT scan of sinuses

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Materials & Methods

- Outcome was assessed comparing SN-5 questionnaire at 52 weeks post-op and at baseline
- Endoscopic exam difficult in children
- Use of CT scan just for follow-up unjustified

Results

- 52 week follow up was available on 24/32 (75%) children
- Mean SN-5 at 52 weeks was 2.95 compared to 4.9 at baseline (P<0.0001

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

SN-5 Change	# of patients (%)	
>=-1.5	12 (50%)	
<-1.5>=-1.0	7 (29%)	
<-1.0>=-0.5	2 (8%)	
Success total	21 (87%)	
<-0.5 =0	1 (4%)	
>0	2 (8%)	
Failure total	3 (12%)	

Balloon Sinuplasty vs adenoidectomy Ramadan HH, Terrell A. Ann Otol Rhinol laryng 2010

- A non-randomized prospective evaluation
- Inclusion criteria: age >2 and <12, failed maximal medical therapy, confirmed diagnosis of CRS by CT and SN-5, and planned surgical intervention
- •Outcomes based on 12 month SN-5 scores

Results: Patient characteristics by surgery group Balloon Adenoidectomy Number of patients 30 (61%) 19 (39%) Male sex 16 (53%) 11 (58%) 0.75 7.7 4.8 0.001 Age Allergy 11 (38%) 0.48 5 (28%) 10 (33%) 9 (47%) 0.33 Asthma Mean CT score 7.5 6.9 0.68 Mean SN-5 score 4.2 3.8 0.06

Results: Percentage of children according to their SN-5 score change

SN-5 Change	Balloon	Adenoidectomy
Marked improvement (>= -1.5)	43.3	36.8
Moderate improvement (-1 to -1.4)	20	10.5
Mild improvement (-0.5to -0.9)	16.7	5.3
Total success	80	52.6
Same (0 to -0.4)	16.7	36.8
Worse (>= +0.1)	3.3	10.5
Total failure	20	47.4

Results: Multivariate analysis of all covariables with surgery as outcome.

Variable	P-value
Surgery	0.038
Age	0.1
CT score	0.7
Prior adenoidectomy	0.18
Asthma	0.92
Allergy	0.19
Gender	0.08

Balloon Sinuplasty after adenoidectomy failure Ramadan HH, Bueller H, Terrell A

- A retrospective review of 26 children who failed adenoidectomy at a mean of 18 months
- age range 2 -12, mean 7.7 years
- Balloon sinuplasty of maxillary sinuses
- Outcomes assessed at 12 month SN-5 scores
- 21/26, 81% had improvement in their scores

Procedure

Surgical Treatment

- Adenoidectomy ~ 50%
- Balloon dilation with a wash ~ 88%
- ESS

ESS

- ESS has gained over the years acceptance as surgical option for CRS in children
 Fear of complications and potential of facial growth
- retardation
- Studies over the years reassured surgeons of small
- percentage of complications Bothwell et al showed facial growth retardation have been shown to be minimal.

ESS

- Numerous studies dating back to 1991 have shown a success rate ranging between 78%-88%
- Meta-analysis by Bent JP 1997; showed a success rate of 88% for ESS
- Success rate similar to adults with much lower complication rate

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

ESS/A

- Most surgeons perform ESS after an adenoidectomy has been performed
- Ramadan 2004; reviewed 200 patients over a 10 year period
- · Children had A, ESS, or ESS/A

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Surgical Treatment

- Prospective collection of surgical data over a 10 years period
- · Children were referred for surgical opinion
- All failed medical Rx with antibiotics, nasal/systemic steroids, allergy Rx, and also reflux Rx for at least 6 months

$\overline{}$	$\overline{}$
J	_
_	

Results

- 1850 patients were evaluated for surgery and included in the study
- 202 (11%) children were considered as surgical candidates
- 18 (9%) were lost to follow up or refused surgery
- 183 patients were available for analysis

Surgery for CRS in Children

- · Adenoidectomy has a 50% success rate and is helpful for children who are young, have no asthma and a low CT score
- Adenoidectomy with sinus wash will have 88% success rate for children with asthma and hi CT score (younger children)
- ESS/hybrid helpful at time of adenoidectomy (88%) for <u>older children</u> with asthma and a hi CT score

Case Presentation

- 6 years old with CRS for more than a year
- He has been on antibiotics & sprays regularly
- Continued symptoms
- History of ear tubes at age of 2 years
 No ear problems currently
 No other surgeries

Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA

Diagnosis

- Exam findings (endoscopy)
 - Congestion/edema
 - Colored discharge
 - polyps
 - adenoids

